MODELS BH2-MJL
TROUBLESHOOTING
(FOR ELECTRICAL SYSTEM)
CONTENTS

A. GENERAL DESCRIPTION .. 1
B. DEFINITION OF TERMS USED ... 2
C. PARTS LAYOUT ... 3
 1. UYPB74 and Revolving Nosepiece Drive DC Motor 3
 2. UYPB75 and Primary Side Parts .. 4
D. CIRCUIT DIAGRAMS ... 5
 1. UYPB74 ... 5
 2. UYPB75 ... 6
E. REVOLVING NOSEPIECE AND ASSOCIATED PARTS 8
 1. Nosepiece does not Rotate .. 8
 2. Nosepiece does not stop Rotating ... 9
 3. Nosepiece does not Click Stop in Position 9
 4. Lack of Power to Rotate Nosepiece 10
 5. Unintended Rotation at Switching On or Off 10
 6. FOOT-SW does not Function .. 11
F. LAMPS .. 12
 1. Lamp does not Light ... 12
 2. Impossible to Adjust Intensity ... 14
 3. Lamp Filament Breaks ... 15
 4. Lamp Flickers .. 16
G. POWER SOURCE ... 17
 1. Equipment does not Operate with Main Switch On 17
A. GENERAL DESCRIPTION

1. This troubleshooting guide is written in the form of a flow chart. So, proceed with troubleshooting and repair along each arrow mark indicated.

2. In this troubleshooting flow chart, connector terminal numbers and IC pin numbers are enclosed in [] as [1], [9].

3. For example, 5V indicated in [1] → [5] for power check and level check means to imply that [1] is taken as GND side and [5] as the HOT side. In this case, [5] indicates that 5V is being sent out to [1].

4. [CA] used in this troubleshooting guide refers to the suspected cause of trouble insofar as the corresponding item is concerned.

5. The meter used for this troubleshooting is only the volt-ohm milliammeter (VOM) (e.g. u-70D, etc.)

6. Items marked [a], [b], [c] ... outside item blocks in the process of checks correspond to the same marks given either to the right of the item blocks or to the right of those on the next page where the details of check are described.
B. DEFINITION OF TERMS USED

1. GND ⇒ Reference potential in electronic circuits. The potential is 0V.
2. HOT ⇒ The line which supplies power voltage to “GND” is referred to as “HOT”.
3. DC Motor ⇒ This refers to a DC motor which starts upon DC power.
4. Primary Side ⇒ This is also known as the input circuit.
 When two coils, L1 and L2, are linked by mutual inductance M (magnetic coupling), L1 of the input side is called either the primary side or the primary circuit, and L2 is called the secondary side or the secondary circuit.

 ![Diagram of primary and secondary sides with mutual inductance M between L1 and L2.]

5. Slit ⇒ This refers to a cut-in point. Here, a part of the light shading plate blocking a transmissive type sensor light is used as slit.
 This slit allows the transmissive type sensor light to pass through it, thereby turning the sensor on. But if the slit is too wide, the period of time in which the sensor is on may prolongs. Care should therefore be taken as the nosepiece may stop at a point somewhat away from the click position.

 ![Diagram showing a light shading plate with a slit, sensor, and motor.]

6. AC Inlet ⇒ This is a connector for inserting an AC cord with a noise filter built in. With this, the noise coming in from the power line can be cut.
7. Triac ⇒ This refers to the bidirectional thyristor. It is turned on when either a positive or negative pulse is applied to the gate electrode.
 The application of the triac is the control of the AC power in a broad range of applications from household electric appliances to industrial equipment where high reliability is called for. Typical uses are in a light adjusting circuit and a temperature control circuit.

8. SW ⇒ Switch
C. PARTS LAYOUT

1. UYPB74 and Revolving Nosepiece Drive DC Motor
2. UYPB75 and Primary Side Parts

Diagram of parts with labels like AB 291500, PUK 2x4SA, AB 291700, CUK 3x8SA, etc.
D. CIRCUIT DIAGRAMS

1. UYPB74
E. REVOLVING NOSEPICE AND ASSOCIATED PARTS

1. Nosepiece does not Rotate

1. Check motor voltage "7V" at both ends of C218 in UYPB75.

Replace transformer T101 with a new one and check the operation of the new transformer.

Does the voltage between 1 and 2 of J202 in UYPB75 vary as given below? Check this with the VOM.

<table>
<thead>
<tr>
<th></th>
<th>1 → 2</th>
<th>2 → 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIGHT SW–ON</td>
<td>-7V</td>
<td>7V</td>
</tr>
<tr>
<td>LEFT SW–ON</td>
<td>7V</td>
<td>-7V</td>
</tr>
</tbody>
</table>

NO → YES
Motor (DM047600) is defective.

Check the condition of the revolving nosepiece drive SW (DY074000) on J105 using the VOM.

<table>
<thead>
<tr>
<th></th>
<th>[O] Conductive</th>
<th>[X] Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIGHT SW–ON</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LEFT SW–ON</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

NO → OK!
Replace the SW and check the operation.

NO → Replace UYPB75
2. Nosepiece does not Stop Rotating

Does continuous rotation stop, in about two seconds?

YES

NO

a) Adjust the position of the slit provided on the motor.

OK! NO

END

a) Replace UYPB75 and check operation.

NO OK!

END

3. Nosepiece does not Click Stop in Position

a) Adjust the position of the slit provided on the motor.

NO OK!

END

a) Replace UYPB74, adjust the slit position, and check the operation.

NO OK!

END

UYPB75 is defective

CA

1. Position of slit is not correct.
2. Revolution stop signal of UYPB74 is abnormal.
3. Motor control circuit of UYPB75 is defective.

a) Refer to the Repair Manual.
4. Lack of Power to Rotate Nosepiece

Check motor voltage "7V" at both ends of C218 in UYPB75. Adjust RV202 if found abnormal.

Check the secondary-side AC 9V voltage of transformer T101 (DL052800 (100V), DL052900 (200V)) according to 3 - 4 of J104.

Replace transformer T101 and check operation.

Motor (DM047600) is defective.

Replace UYPB75 and check operation.

5. Unintended Rotation at Switching On or Off

Replace UYPB75

CA 1. Reset circuit in UYPB75 is defective.
6. FOOT-SW does not Function

Is operation made by SW (DY074000) of the equipment body?

Check the motor drive voltage by means of J202 of UYPB75 when either the SW of the equipment body or FOOT-SW is pressed.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIGHT SW-ON</td>
<td>-7V</td>
<td>7V</td>
<td></td>
</tr>
<tr>
<td>LEFT SW-ON</td>
<td>7V</td>
<td>-7V</td>
<td></td>
</tr>
</tbody>
</table>

Check operation after replacing the FOOT-SW.

Check motor voltage "7V" at both ends of C218 in UYPB75.

Check operation after replacing the motor (DM047600).

Replace transformer T101 and check operation.

Replace UYPB75 and check operation.

Check operation after replacing UYPB75.

END
Check the condition of the FOOT-SW on J109 using the VOM.

<table>
<thead>
<tr>
<th></th>
<th>1 - 2</th>
<th>1 - 3</th>
<th>2 - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIGHT SW-ON</td>
<td>O</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>LEFT SW-ON</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

[O] → Conductive
[X] → Open

Check operation after replacing the FOOT-SW.

Motor (DM047600) is defective.

F. LAMPS

1. Lamp Does Not Light

Is resistance at both ends of lamp = 0 ohm?

Replace the lamp and check operation.

Check the main fuses DB032400 (100V), DB032500 (200V).

Replace the main fuses and check operation.

Is AC11.5V coming between W201 and W202 of UYPB75?

Replace UYPB75.
Can the nosepiece be revolved by the revolving nosepiece drive SW (DY074000)?

YES NO

Replace transformer T101 (DL052800 (100V), DL052900 (200V)) and then check operation.

OK! NO

END

Check the AC cord for electrical continuity.

NO OK!

Replace the AC cord and check operation.

OK! NO

END

Check the AC inlet (DF011800).

NO OK!

Replace the AC inlet and check operation.

OK! NO

END

Check the main switch SW101 (DY009500 (100V), DY009600 (200V)).

NO OK!

Replace the main switch and check operation.

OK! NO

END

Check the primary voltage select switch SW-102 (DY007500 (100V), DY007600 (200V)).

NO OK!

Replace the primary voltage select switch and check operation.

OK! NO

END

Replace transformer T101 (DL052800 (100V), DL052900 (200V)).

CA

1. Lamp filament burned out.
2. Triac Q101 is defective.
3. Light adjusting circuit of UYPB75 is defective.
4. Light control is defective.
5. Transformer T101 is defective.
6. Primary side is defective.

If the resistance value among three terminals of the triac is as shown below, it is okay. It will be easier to make this measurement using W129, W136, and W137.

Remove J111 and check if the resistance between W140 and W141 smoothly changes from 0 ohm to 250 kohms with the light control knob slid.

It is satisfactory if electrical continuity is established between the terminals shown below.

When the condition between terminals of AC inlet is checked on the resistance range of the VOM it is normal if as given in the table below.

When the condition between terminals of the main switch is checked on the resistance range of the VOM, it is normal if as given in the table below.
2. Impossible to Adjust Intensity

When the condition between terminals of the primary voltage select switch is checked on the resistance range of the VOM, it is normal if as given in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Blue</th>
<th>Black</th>
<th>Violet</th>
</tr>
</thead>
<tbody>
<tr>
<td>100V (220V)</td>
<td>✘</td>
<td>✘</td>
<td>✗</td>
</tr>
<tr>
<td>115V (240V)</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>115V (240V)</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

When the resistance changes from 0 ohm to 250 kohms with the light control knob slid.

Adjust the lamp voltage as described in the Repair Manual.

- **CA**
 1. Check the light control knob (DR508900).
 2. Triac Q101 is defective.
 3. Light adjusting circuit of UYPB75 is defective.
 4. Lamp voltage is improperly adjusted.

- **a**
 Remove J111 and check if the resistance between W140 and W141 changes from 0 ohm to 250 kohms with the light control knob slid.
 It is okay if the resistance value among three terminals of the triac is as given below.
 It will be easier to make this measurement using W129, W136, and W137.

- **b**
 Replace UYPB75 and check operation.
 Adjust the lamp voltage as described in the Repair Manual.
3. Lamp Filament Breaks

(a) Check the triac Q101 (DS034000).

- NO
 - Replace the triac and check operation.

- OK!
 - OK!
 - END

(b) Adjust the lamp voltage in accordance with the Repair Manual.

- OK!
 - END

- NO
 - Replace UYPB75 and adjust the lamp voltage.

1. Triac Q101 is defective.
2. Lamp voltage is improperly adjusted.
3. Light adjusting circuit of UYPB75 is defective.

(c) It is okay if the resistance value among three terminals of the triac is as given below. It will be easier to make this adjustment using W129, W136, and W137.

- T1 W129 Orange
- T2 W137 White
- T3 W136 Brown

- T1 T2 G

(200V System)
4. Lamp Flickers

See if the inside of lamp house (mainly the lamp and contact) is dirty. Clean it if dirty and check operation.

Check the triac Q101 (DS034000).

Replace the triac and check operation.

Replace UYPB75 and adjust the lamp voltage.

CA 1. Lamp making imperfect contact due to dirty contact in the lamp house.
2. Triac Q101 is defective.
3. Light adjusting circuit of UYPB75 is faulty.

It is okay if the resistance value among three terminals of the triac is as given below. It will be easier to make this measurement using W129, W136, and W137.

<table>
<thead>
<tr>
<th>NEC</th>
<th>W129</th>
<th>Orange</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>W137</td>
<td>White</td>
</tr>
<tr>
<td>G</td>
<td>W136</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T1, T2, G

(200V System)
G. POWER SOURCE

1. Equipment Does Not Operate Even With Main Switch ON

Check main fuse (OB032400 (100V), DB032500 (200V)).

- NO
- OK!

Replace the main fuse and check operation.

- OK!
- NO

END

CA 1. The main fuse burnt out.
2. Transformer T101 is defective.
3. AC inlet is defective.
4. Main switch is defective.
5. Primary-side voltage select switch is defective.
6. Power circuit of UYPB75 is defective.

a) Check the output voltage of the transformer T101 between J104 and W201.

- J104 [4] white-W201 blue AC11V

b) Check the input voltage between terminals (blue and violet) of the primary-side voltage and terminal (white) of the main switch.

- a. Can AC 100V (AC 220V) be measured between the violet line of the primary-side voltage select switch and terminal 2 (white line) of the main switch when the input voltage is AC 100V (AC 220V).
- b. Can AC 115V (AC 240V) be measured between the blue line of the primary-side voltage select switch and terminal 2 (white line) of the main switch when the input voltage is AC 115V (AC 240V).

The power is normal if electrical continuity is established between the terminals as shown below.
(e) Check main switch SW101
DY009500 (100V), DY009600 (200V).

- NO
 - Replace the main switch and check operation.
 - OK!

- END

(f) Check primary-side voltage select switch SW102 (DY007500 (100V),
DY007600 (200V)).

- NO
 - Replace the primary-side voltage select switch and check operation.
 - OK!

- END

(a) Is the output of transformer T101
(DL052800 (100V), DL052900
(200V)) normal?

- NO
 - Replace the transformer T101 and check operation.
 - OK!

- END

Replace UYPB75.

(d) When the condition between terminals of
the AC inlet is checked on the resistance
range of the VOM, the power is normal if
as given in the table below.

![Diagram]

(e) When the condition between terminals of
the main switch was checked on the resistance
range, the power is normal if as given in the table below.

![Diagram]

(f) When the condition between terminals of
the primary-side voltage select switch is
checked on the resistance range, the power is
normal if as give in the table below.

![Diagram]